Some thoughts on Dislocation Nucleation

P. Pirouz
Department of Materials Science and Engineering
Case Western Reserve University
Cleveland, OH 44106-7204
U.S.A.

The usual way that partial dislocations are taught in textbooks on dislocation theory is to start with a total dislocation with a Burgers vector b that may then be dissociated into two (sometimes more) partials with Burgers vectors b_l and b_t for leading and trailing partials, respectively. However, in this paper we start by assuming that in a crystal subject to a shear stress τ first the leading partial dislocation is nucleated on the slip plane that starts to glide and because of its non-integer lattice vector generates a stacking fault with an energy per unit area γ. After a travel time t and a travel distance d on the glide plane the trailing partial dislocation is nucleated. If the core of the partials overlap within the distance d, the dislocation is considered to be perfect and its Burgers vector is taken to be b. On the other hand, if d is larger than the overlap distance, the dislocation is considered to be dissociated. This discussion leads us into how surface twins may form in a crystal. The influence of different factors, including line tension, image force, lattice (Peierls) resistance and stacking fault energy on nucleation of a partial dislocation are considered and the importance of each assessed. We shall also discuss the nucleation frequency of the two partials, that of the total dislocation, and the distance d which is the stacking fault width. An attempt is made to estimate t and d, and thus the stacking fault energy γ for a covalently-bonded material.