Case Western Reserve University’s SDLE Center receives $1.47 million SunShot grant

The Solar Durability and Lifetime Extension (SDLE) Research Center at Case Western Reserve University, an organization that conducts degradation research on solar energy devices and materials, has been awarded a $1.47 million grant from the U.S. Department of Energy SunShot Initiative. The project will focus on testing the interactions of a new commercial silicon solar cell technology, called passivated emitter rear cell (PERC), with the packaging materials in solar panels aged under accelerated and real-world conditions.

PERC cells recently have been introduced to the solar market but present new concerns for lifetime and long-term power loss. Additionally, new packaging strategies must be considered to extend solar panel lifetimes beyond the current standard of 20 to 25 years. Using novel characterization methods in the lab and in the field, researchers will identify degradation mechanisms that shorten the lifetime of PERC cells, the backsheet on the rear surface and materials that encapsulate the cells.

“While PERC cells increase module efficiency from about 18 percent to 20 percent, a tremendous improvement in initial energy yield, the big challenge now is demonstrating the reliability of PERC modules compared to traditional crystalline silicon modules,” said Roger French, Kyocera Professor of Materials Science at Case Western Reserve and director of the SDLE Research Center.

The project team spans from academic reliability and device scientists at Case Western Reserve, the University of Central Florida and the University of Connecticut, to module and cell materials companies such as DuPont and Cybrid, to module manufacturer and power plant owner Canadian Solar. The degradation science approach incorporating advanced characterization techniques into time-series data streams allows for exploratory statistical data analytics and network modeling for rapid hypothesis generation and testing.

The SDLE Research Center was selected as a part of the Sunshot Initiative’s Photovoltaics Research and Development 2 funding program, which seeks to transform PV module design, explore high-risk emerging technology research, and devices and designs that facilitate rapid solar installation. Projects under this program will investigate new solar technology innovations that have the potential to make solar power affordable throughout the United States.

By identifying mechanisms of power loss in PERC modules, this research will improve the long-term reliability of PERC solar modules, thereby helping to reduce the cost of solar power.