EECS Distinguished Lecture

David Ferrucci
Building Watson - An Overview of the DeepQA Project
IBM Fellow
Wolstein Auditorium, Iris S. and Bert L. Wolstein Research Bldg, 2103 Cornell Road
10:00 - 11:00am


     Computer systems that can directly and accurately answer peoples' questions over a broad domain of human knowledge have been envisioned by scientists and writers since the advent of computers themselves. Open domain question answering holds tremendous promise for facilitating informed decision making over vast volumes of natural language content. Applications in business intelligence, healthcare, customer support, enterprise knowledge management, social computing, science and government could all benefit from computer systems capable of deeper language understanding. The DeepQA project is aimed at exploring how advancing and integrating Natural Language Processing (NLP), Information Retrieval (IR), Machine Learning (ML), Knowledge Representation and Reasoning (KR&R) and massively parallel computation can greatly advance the science and application of automatic Question Answering. An exciting proof-point in this challenge was developing a computer system that could successfully compete against top human players at the Jeopardy! quiz show (www.jeopardy.com).
     Attaining champion-level performance at Jeopardy! requires a computer to rapidly and accurately answer rich open-domain questions, and to predict its own performance on any given question. The system must deliver high degrees of precision and confidence over a very broad range of knowledge and natural language content with a 3-second response time. To do this, the
DeepQA team advanced a broad array of NLP techniques to find, generate, evidence and analyze many competing hypotheses over large volumes of natural language content to build Watson (www.ibmwatson.com). An important contributor to Watson’s success is its ability to automatically learn and combine accurate confidences across a wide array of algorithms and over different dimensions of evidence. Watson produced accurate confidences to know when to “buzz in” against its competitors and how much to bet. High precision and accurate confidence computations are critical for real business settings where helping users focus on the right content sooner and with greater confidence can make all the difference. The need for speed and high precision demands a massively parallel computing platform capable of generating, evaluating and combing 1000’s of hypotheses and their associated evidence. In this talk, I will introduce the audience to the Jeopardy! Challenge, explain how Watson was built on DeepQA to ultimately defeat the two most celebrated human Jeopardy Champions of all time and I will discuss applications of the Watson technology beyond in areas such as healthcare.



     Dr. David Ferrucci is an IBM Fellow and the Principal Investigator (PI) for the Watson/Jeopardy! project. He has been at IBM’s T.J. Watson’s Research Center since 1995 where he heads up the Semantic Analysis and Integration department. Dr. Ferrucci focuses on technologies for automatically discovering valuable knowledge in natural language content and using it to enable better decision making.

     As part of his research he led the team that developed UIMA. UIMA is a software framework and open standard widely used by industry and academia for collaboratively integrating, deploying and scaling advanced text and multi-modal (e.g., speech, video) analytics. As chief software architect for UIMA, Dr. Ferrucci led its design and chaired the UIMA standards committee at OASIS. The UIMA software framework is deployed in IBM products and has been contributed to Apache open-source to facilitate broader adoption and development.

     In 2007, Dr. Ferrucci took on the Jeopardy! Challenge – tasked to create a computer system that can rival human champions at the game of Jeopardy!. As the PI for the exploratory research project dubbed DeepQA, he focused on advancing automatic, open-domain question answering using massively parallel evidence based hypothesis generation and evaluation. By building on UIMA, on key university collaborations and by taking bold research, engineering and management steps, he led his team to integrate and advance many search, NLP and semantic technologies to deliver results that have out-performed all expectations and have demonstrated world-class performance at a task previously thought insurmountable with the current state-of-the-art. Watson, the computer system built by Ferrucci’s team is now competing with top Jeopardy! champions. Under his leadership they have already begun to demonstrate how DeepQA can make dramatic advances for intelligent decision support in areas including medicine, finance, publishing, government and law.

     Dr. Ferrucci has been the Principal Investigator (PI) on several government-funded research programs on automatic question answering, intelligent systems and saleable text analytics. His team at IBM consists of 28 researchers and software engineers specializing in the areas of Natural Language Processing (NLP), Software Architecture, Information Retrieval, Machine Learning and Knowledge Representation and Reasoning (KR&R).

     Dr. Ferrucci graduated from Manhattan College with a BS in Biology and from Rensselaer Polytechnic Institute in 1994 with a PhD in Computer Science specializing in knowledge representation and reasoning. He is published in the areas of AI, KR&R, NLP and automatic question-answering.