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ABSTRACT

Distance metrics are often used as a way to compare the similarity of two objects, each represented by a set of
features in high-dimensional space. The Euclidean metric is a popular distance metric, employed for a variety of
applications. Non-Euclidean distance metrics have also been proposed, and the choice of distance metric for any
specific application or domain is a non-trivial task. Furthermore, most distance metrics treat each dimension or
object feature as having the same relative importance in determining object similarity. In many applications,
such as in Content-Based Image Retrieval (CBIR), where images are quantified and then compared according
to their image content, it may be beneficial to utilize a similarity metric where features are weighted according
to their ability to distinguish between object classes. In the CBIR paradigm, every image is represented as
a vector of quantitative feature values derived from the image content, and a similarity measure is applied
to determine which of the database images is most similar to the query. In this work, we present a boosted
distance metric (BDM), where individual features are weighted according to their discriminatory power, and
compare the performance of this metric to 9 other traditional distance metrics in a CBIR system for digital
histopathology. We apply our system to three different breast tissue histology cohorts – (1) 54 breast histology
studies corresponding to benign and cancerous images, (2) 36 breast cancer studies corresponding to low and
high Bloom-Richardson (BR) grades, and (3) 41 breast cancer studies with high and low levels of lymphocytic
infiltration. Over all 3 data cohorts, the BDM performs better compared to 9 traditional metrics, with a greater
area under the precision-recall curve. In addition, we performed SVM classification using the BDM along with
the traditional metrics, and found that the boosted metric achieves a higher classification accuracy (over 96%)
in distinguishing between the tissue classes in each of 3 data cohorts considered. The 10 different similarity
metrics were also used to generate similarity matrices between all samples in each of the 3 cohorts. For each
cohort, each of the 10 similarity matrices were subjected to normalized cuts, resulting in a reduced dimensional
representation of the data samples. The BDM resulted in the best discrimination between tissue classes in the
reduced embedding space.

Keywords: breast cancer, CBIR, distance metric, similarity, Boosted Distance Metric (BDM), Graph Embed-
ding, SVM, Precision-Recall, histopathology, lymphocytic infiltration

1. INTRODUCTION

1.1 Content-Based Image Retrieval

Digital image databases have become commonplace thanks to advances in computational storage and processing
capabilities. In many applications, it is desirable to compare one image, a “query” to a database of images so
the database images can be ranked in order of decreasing similarity. Traditionally, the similarity between two
images is measured by matching user-defined keywords that describe both the query and database; however, the
manual labeling of these images is time-consuming and subject to variability. Advances in image processing and
computational power over the last two decades have led to the development of content-based image retrieval
(CBIR) systems. A CBIR system is composed of two main components: Quantitative Image Representation, or
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the features that are calculated from the image content, and a Similarity Metric, or the method of comparing a
query image to the images in the database. CBIR takes advantage of quantitative, objective features extracted
from the images to determine the similarity between an image pair, and can rank database images according to
this similarity metric. Images can be quantified with global features calculated over the entire scene or structure-
based features which attempt to quantify higher-level objects and patterns appearing in the image. In most cases,
choosing the method of image representation is application-specific. However, choosing the appropriate similarity
metric to compare the feature vectors from the query and database images is a non-trivial task.

1.2 Metrics in CBIR and Classification
Let us consider a repository of N images, Crj , j ∈ {1, · · · , N}, where each image belongs to one of 2 particular
classes (ω1, ω2). Let us denote as L(Crj ) ∈ {+1,−1}, the labels used to denote the class of Crj . The main objective
within CBIR is as follows: given a query scene Cq and repository image Crj , find an appropriate distance function
Dψ using metric ψ such that Dψ(Cq, Crj ) yields a small value for Crj , j ∈ {1, · · · , N} for which L(Cq) = L(Crj ) and
correspondingly large for L(Cq) �= L(Crj ). Note that in this context, “distance” and “similarity” are inversely
proportional: if images are far apart in high-dimensional space, they have a low similarity and are likely to be
from different classes. Querying the database thus consists of calculating D(Cq, Crj ) for all repository images and
ordering the results in terms of decreasing similarity. The performance of the CBIR system (and specifically the
distance metric ψ) can be determined by examining whether the database images that are most similar to the
query have the same class label.

Many applications1 using distance metrics choose the L2 or Euclidean norm as a way to measure the similarity
between two feature vectors. For instance, several supervised (Support Vector Machines,2 Nearest Neighbor3)
and unsupervised clustering and classification schemes employ the L2 norm, either directly or via a kernel, for
measuring object similarity. However, the Euclidean norm may not always be the optimal similarity metric. There
are many other distance metrics – Bray Curtis, Canberra, Chebychev, Chi-Squared, Manhattan, Minkowski,
Squared Chi-Squared, Squared Chord – that have been proposed, some of which may be more appropriate based
on the specific domain or application. A drawback of many of these traditional distance measures, however, is
the assumption that all dimensions in the image representation space have an equal contribution to measuring
object similarity; that is, each feature is equally weighted in the final similarity calculation.

Supervised learning metrics – i.e. metrics that preferentially weight certain dimensions or features – have
been suggested for use in similar applications.4,5 Athitsos, et al.6 introduced a method for combining multiple
“weak” embeddings of image data into a single “strong” embedding. Each embedding’s weight is related to
how well a classifier performs on each of the embeddings: a better classification accuracy leading to a higher
weight in the final classifier. Yang, et al.7 proposed using a boosted distance metric for assessing the similarity
between mammogram images in an interactive search-assisted diagnosis system. They found that the application
of boosting to weight individual features in a distance metric increased both retrieval and classification accuracy
over the Euclidean metric.

1.3 Histopathology and CBIR
The medical community has been cited1 as a major beneficiary of CBIR development. The increase in digital
medical image acquisition in routine clinical practice coupled with increases in the quantification and analysis
of medical images creates an environment where a CBIR system could provide significant benefits. Müller et
al.,1 provide an overview of CBIR applications in medicine, stating that such applications can include teaching,
research, diagnostics, and annotation or classification of medical images. Histopathology, in particular, stands
to benefit greatly from CBIR, thanks to the advent of high-resolution digital whole-slide scanners. Quantitative
image analysis of histology can help to reduce inter- and intra-observer variability, as well as provide a standard
for tissue analysis based solely on qualitative image-derived features. Such systems have found application,
among others, in breast8 and prostate.9 A study by Caicedo, et al.10 investigated the development of a CBIR
system for basal-cell carcinoma images of histopathology, testing five distance metrics and five different feature
types, reporting an average precision rate of 67%. However this study indicated that the best-performing distance
metric depends on the feature space. Doyle, et al.11 investigated the use of different feature types for a CBIR
system for breast tissue, and found that the choice of feature space had a large impact on the ability of the
system to match query images to database images from the same class.
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1.4 Contributions

In this paper we introduce a Boosted Distance Metric (BDM) based on the AdaBoost12 algorithm, which em-
pirically identifies the most significant image features which contribute the most to the discrimination between
different tissue types and weights them accordingly. This similarity metric will be important for applications
in both object classification and CBIR. Further, we compare the performance of the BDM against 9 traditional
distance metrics: Bray Curtis, Canberra, Chebychev, Chi-Squared, Euclidean, Manhattan, Minkowski, Squared
Chi-Squared, and Squared Chord distances. The different metrics are evaluated on three different datasets and
3 corresponding experiments, (1) distinguishing between breast cancer samples with and without lymphocytic
infiltration, (2) distinguishing cancerous breast tissue samples from benign samples, and (3) distinguishing high
Bloom-Richarcson grade tissue from low grade tissue. Additionally, we employ a support vector machine (SVM)
classifier using each of the 9 similarity metrics within the radial basis function (RBF) kernel to classify the query
images. Finally, we use the similarity metrics to construct low-dimensional embeddings of the data, allowing us
to visualize how well the metrics can distinguish between images from different tissue classes in an alternative
data space representation.

In this work, we employ texture features similar to those used in,11,13 as histopathological images tend to
have different texture characteristics due to varying degrees of nuclear proliferation: benign tissue regions contain
fewer nuclei when compared to cancerous regions. Further, the arrangement of nuclei in a tissue image plays
an important role in describing physiological changes, such as the presence and degree of lymphocytic infiltrate
(LI).14 Thus, we have employed the use of architectural features, which use nuclear centroids to generate graph-
based statistics to quantify the content of the images. These features have been shown11,15 to discriminate well
between different tissue types.

The remainder of the paper is organized as follows. Section 2 describes the experimental setup and the specific
data sets used in this study. Section 3 discusses the feature extraction process, followed by a detailed description
of the BDM algorithm in Section 4. Section 5 explains the evaluation criteria, followed by the experimental
results in Section 6 and concluding remarks in Section 7.

2. EXPERIMENTAL DATA: BREAST CANCER HISTOPATHOLOGY

In this work, we focus our analysis on tissue samples taken from the breast. The American Cancer Society
predicts over 184,000 new cases of breast cancer (BC) in 2008, leading to 41,000 fatalaties. Proper screening
and diagnostic techniques can drastically increase the survival rate of a patient with BC, typically involving
a biopsy of a suspicious lesion identified on mammography.16 Tissue samples are then manually examined
under a microscope by a pathologist, and a Bloom Richardson (BR) grade17 is assigned to the cancer. The BR
grading scheme is a systematic way of classifying the degree of BC by analyzing the degree of tumor tubule
formation, mitotic activity, and nuclear pleomorphism. BR grade is often critical in deciding treatment options.
Unfortunately, grading tends to be qualitative and subject to a high degree of inter-, and even intra-observer
variability,18 sometimes leading to suboptimal treatment decisions. Thus, it is desirable to develop quantitative
methods for detecting and analyzing these tissue samples leading in turn to quantitative, reproducible image
analysis of the tissue.

For the experiments considered in this study, 3 data cohorts were considered. All 3 cohorts comprised
Hematoxylin & Eosin (H&E) stained breast biopsy tissues, scanned into the computer on a whole-slide digital
scanner. The first two datasets (Cancer Detection, Cancer Grading) were collected and digitized at the University
of Pennsylvania Department of Surgical Pathology, while the third dataset (Lymphocytic Infiltrate (LI)) was
obtained and digitized at the Cancer Institute of New Jersey (CINJ). The datasets are described below and are
summarized in Table 1.

Cancer Detection (DCD): This dataset consists of 54 digital images of breast biopsy tissue scanned into the
computer at 40x optical magnification. Each image represents a region of interest (ROI), and has been manually
identified by an expert pathologist as containing either cancerous or benign tissue. Of the 54 images, 18 were
classified as benign and 36 were identified as cancerous by 2 expert pathologists.
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Cancer Grading Dataset (DCG): This is a subset of the DCD dataset comprised of the 36 cancerous images.
However, in this dataset the pathologist identified the BC grade of the tissue, classifying the regions as high
grade (12 images) or low grade (24 images).

Lymphocytic Infiltration (DLI): This dataset comprises 41 H&E images of breast tissue obtained at CINJ.
The ROI’s on these images were chosen according to degree of LI present in the image. A pathologist classified
each image either as having a high (22 images) or a low degree (19 images) of LI.

Dataset Notation Classes (ω1 / ω2) Class Distribution (ω1/ω2)
Cancer Detection DCD Cancer/Benign 18/36
Cancer Grading DCG High Grade/Low Grade 12/24

Lymphocytic Infiltration DLI Infiltrated/Not Infiltrated 22/19
Table 1. Datasets used to evaluate the distance metrics considered in this study.

3. FEATURE EXTRACTION

In order to evaluate and compare the performance of similarity metrics, the images need to first be quantitatively
represented through the process of feature extraction. In this way, a single image is converted to a point in a
high-dimensional feature space, where it can be compared to other points (images) within the same space. In
the following sections, we denote a generic image scene as C = (C, f), where C is a 2D grid of pixels c and f
is a function that assigns an intensity to each pixel c ∈ C. From each C in each of DCD, DCG, and DLI, we
extract image features corresponding to textural characteristics at every pixel c ∈ C. In addition, we extract
architectural features for the scenes in DLI in order to quantify the arrangement of the nuclei in the images.11,15

These features are detailed below and are summarized in Table 2. Our goal with feature extraction is to create
a set of K feature operators, Φi, for i ∈ {1, · · · ,K}, where Φi(C) represents the value of feature i from image
scene C. In the following sections, we describe how we obtain the feature operators.

3.1 Texture Features

Texture features are useful in characterizing tissue samples in H&E stained slides, since changes in the prolifer-
ation of nuclei result in different staining patterns and different resulting textures.11 This type of textural data
has been quantified using Laws texture features, described below.

Laws Features: These features19 involve the use of a set of 1-dimensional filters that provide various im-
pulse responses in order to quantify specific patterns in the images. These filters are abbreviated as L (Level),
E (Edge), S (Spot), R (Ripple), and W (Wave) owing to the shape of the filters. By multiplying combi-
nations of these filters, we generate 15 unique two-dimensional filter masks Γl, for l ∈ {1, · · · , 15}, where
Γl ∈ {LE,LS,LR,LW,ES,ER,EW,SR,SW,RW,LL,EE,SS,RR,WW}. Each of these filters is then convolved
with the image scene C to generate feature scenes Fl = C ∗ Γl = (C, gl), for l ∈ {1, · · · , 15}, where gl(c) is a
function that assigns a value from feature l to pixel c ∈ C. Examples of these feature scenes are shown in Figure
1 for a breast tissue histology scene in DCG. We calculate the following statistics for each l:

Φ1(C) =
1
|C|

∑

c∈C
gl(c), (1)

Φ2(C) =

√
1
|C|

∑

c∈C
(gl(c) − Φ1(C))2, (2)

Φ3(C) =
1
|C|

∑
c∈C(gl(c) − Φ1(C)4

(
1
|C|

∑
c∈C(gl(c) − Φ1(C)2

)2 − 3, (3)

Φ4(C) = MEDIANc∈C [gl(c)] , (4)
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r

Φ5(C) =
1
|C|

∑
c∈C(gl(c) − Φ1(C)3

(
1
|C|

∑
c∈C(gl(c) − Φ1(C)2

)3/2
, (5)

where Φ1(C) through Φ5(C) represents the average, standard deviation, kurtosis, median, and skewness of feature
values, respectively. These are calculated from each Fl, l ∈ {1, · · · , 15}, yielding a total of 75 Laws feature values.

(a) (b) (c) (d) (e) (f)

Figure 1. Examples of the feature scenes Fl used to generate the feature values described in Section 3. Shown are (a) an
example of a tissue image and the texture images generated from the following filters: (b) LL, (c) EE, (d) SS, (e) RR,
and (f) WW.

3.2 Architectural Features
To extract quantifiable image attributes from the graph-based representations of the image, we first manually
label the nuclear centroids within each of the images. A pixel at the centroid of a nucleus is denoted ĉ, where ĉk

refers to the kth nucleus in the image, for k ∈ {1, · · · ,m}. The following features were extracted exclusively for
the DLI dataset.

Voronoi Diagram: The Voronoi Diagram is defined by a set of polygons P = {P1, P2, . . . , Pm}, where each
polygon is constructed around a nuclear centroid by adding surrounding pixels to the nearest centroid. Thus, Pa
is constructed around ĉa by adding pixels for which DEU(c, ĉa) = mink||c− ĉk|| where a, k ∈ {1, 2, . . . ,m}; that
is, each non-centroid pixel is added to the polygon of the nearest centroid pixel. The metric DEU(c, ĉa) is defined
as the Euclidean distance between pixels c, ĉa ∈ C. Area, perimeter length, and chord length are calculated for
all polygons in the image, and the average, standard deviation, min/max ratio, and measurement of disorder are
calculated across the entire graph to yield 12 Voronoi features for every image.

Delaunay Triangulation: The Delaunay graph is constructed such that if two unique polygons Pa and Pb,
where a, b ∈ {1, · · · ,m} from the Voronoi graph share a side, their nuclear centroids ĉa and ĉb are connected
by and edge, denoted Ea,b. The collection of all edges constitutes the Delaunay graph, which is a triangulation
connecting each nuclear centroid. The edge lengths and triangle areas are calculated for all triangles in the
image, and the average, standard deviation, min/max ratio, and measurement of disorder is calculated across
the graph, yielding 10 Voronoi features for every image.

Minimum Spanning Tree: A spanning tree graph G is a connected, undirected graph connecting all vertices
(nuclei) in an image. For any set of vertices, there may be many G. In each G, weights denoted wEG are assigned
to each edge E based on the length of E and G. The sum of all weights in G determines the characteristic
weight, ŵG assigned to each G. The minimum spanning tree, denoted as G′, has a weight ŵG′ ≤ ŵG for every
other spanning tree G. From G′, we calculate the average, standard deviation, min/max ratio, and disorder of
the branch lengths, yielding 4 minimum spanning tree features for every image.

Nuclear Features: Finally, we calculate several non-graph based features from the arrangement of the nuclei
in the image. Nuclear density is computed as m

|C| , where |C| is the cardinality of C. For each nuclear centroid
ĉa, N (ρ, ĉa) is the set of pixels c ∈ C contained within a circle with its center at ĉa and radius ρ. The
number of nuclear centroids ĉk, for k �= a and k, a ∈ {1, · · · ,m}, contained within N (ρ, ĉa) are computed for
ρ ∈ {10, 20, · · · , 50}. Additionally, the radius ρ required for N (ρ, ĉa) to contain 3, 5, and 7 additional nuclei
are also computed. The mean, standard deviation, and disorder of these values for all ĉa in C are calculated to
provide 25 features for each C.
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(a) (b) (c) (d)

Figure 2. Illustration of the graphs used to generate the feature values described in Section 3 for the DLI dataset. Shown
are: (a) the original image, (b) the Voronoi Diagram, (c) the Delaunay Triangulation, and (d) the Minimum Spanning
Tree.

Feature Type (Dataset) Feature Name Number of Features
Texture (DCD, DCG, DLI ) Laws Filters 75

Architecture (DLI)

Voronoi Diagram 12
Delaunay Triangulation 10
Minimum Spanning Tree 4

Nuclear Features 25
Table 2. Features used to quantify the tissue images.

4. BOOSTED DISTANCE METRIC

The purpose of the Boosted Distance Metric (BDM) is to construct a weighted metric where each feature’s
contribution to the distance between two points is related to its ability to distinguish between object classes.
The construction of the BDM is a three-step process: (1) For each feature extracted above, we construct a
weak classifier hi, i ∈ {1, · · · ,K}, such that hi(C) ∈ {+1,−1} gives a classification label for C. (2) We identify
the T most accurate classifiers ht, t ∈ {1, · · · , T}, and learn the weights αt associated with each classifier via
AdaBoost.12 (3) Finally, we build the BDM using the weight / classifier pairs (αt, ht). Note that independent
BDM’s are separately learned for each of DCD, DCG, DLI. The details of each step are given below.

Constructing Weak Classifiers: The weak classifiers hi are generated in the following manner.

1. The feature extraction process involves the use of a feature operator Φi, i ∈ {1, · · · ,K}, where for any
image scene C, Φi(C) yields a single feature value. Each image has a class label L(C) ∈ {+1,−1}.

2. We obtain our training set, Str = {Crj |j ∈ {1, · · · , N}}, as two-thirds of the total dataset. We obtain two
class distributions B+

i ,B−
i , for i ∈ {1, · · · ,K}.

3. Class distribution means of B+
i and B−

i , i ∈ {1, · · · ,K}, are estimated as μ(B+
i ) and μ(B−

i ), respectively.

4. We define the separating plane between μ(B+
i ) and μ(B−

i ), i ∈ {1, · · · ,K}, as

βi = min[μ(B+
i ), μ(B−

i )] +
|μ(B+

i ) − μ(B−
i )|

2
. (6)

5. For each i ∈ {1, · · · ,K}, define a weak classifier hi such that for any query scene Cq:

hi(Cq) =
{

+1, if Φi(Cq) ≥ βi,
−1, otherwise. (7)

Learning Feature Weights via AdaBoost: We use the AdaBoost algorithm12 to select class discriminatory
weak classifiers and learn the associated weights. The AdaBoost algorithm operates in an iterative fashion,
choosing the best-performing weak classifiers and assigning weights according to the classification accuracy of
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that feature. The algorithm maintains an error-weighting distribution, Π, to ensure that subsequent features
focus on difficult to classify samples. The output of the algorithm is a set of selected weak classifiers, ht, and
associated weights, αt, for t ∈ {1, · · · , T}, where 1 ≤ T ≤ K. The algorithm is given below.

Algorithm BoostMetricWeights()
Input: Str, L(Crj ) for j ∈ {1, · · · , N}, iterations T , weak classifiers hi for i ∈ {1, · · · ,K}.
Output: Selected classifiers ht, associated weights αt.
begin

0. Initialize distribution Π1(j) = 1
N , j ∈ {1, ..., N};

1. for t = 1 to T do
2. Find ht = arg minhi εi, where εi =

∑N
j=1 Πt(j)[L(Crj ) �= hi(Crj )];

3. if εt ≥ 0.5 then stop;
4. αt = 1

2 ln 1−εt
εt

;
5. Update Distribution, Πt+1(j) = 1

Zt
Πt(j)e−αtL(Crj )ht(Crj ) for all j, where Zt is a normalization term;

6. Output αt;
7. endfor;

end

Note that the same feature may be chosen twice in this algorithm, and some features may not be chosen at
all if their classification error εi is consistently above 0.5. In this work we chose T = 10.

Constructing the BDM: Once the weights and features have been chosen, the BDM is constructed. To find
the distance between query image Cq and repository image Crj , we calculate

DBDM(Cq, Crj ) =

[
1
T

T∑

t=1

αt‖Φt(Cq) − Φt(Crj )‖2

] 1
2

. (8)

5. EVALUATION OF DISTANCE METRICS

5.1 Precision Recall Curves

In a CBIR system, performance is typically judged based on how many retrieved images for a given query image
are “relevant” to the query, and where in the retrieval list order they appear. For our purposes, a repository
image Crj is considered relevant if L(Cq) = L(Crj ). The ability to recall relevant images is evaluated with respect
to two statistics: precision, or the ability to retrieve only relevant images, and recall, or the ability to retrieve all
available relevant images. The training set Str acts as our database, and is the source of our repository images
Crj ∈ Str, j ∈ {1, · · · , N}. The testing set Ste is the source for the query images, Cq ∈ Ste.

First, a query image is selected from the testing set and features are extracted via the feature operator,
Φi(Cq), i ∈ {1, · · · ,K}, as described in Section 3. For each repository image Crj , j ∈ {1, · · · , N}, the distance is
calculated: Dψ(Cq, Crj ), where ψ is one of the metrics listed in Table 3. The repository images are arranged in a
retrieval list in order of increasing distance (i.e. decreasing similarity). Denoting by R, the number of retrieved
images, R′ as the number of relevant retrieved images, and N ′ as the number of relevant images in the database,
the precision is calculated as R′

R , and recall is calculated as R′
N ′ , for R ∈ {1, · · · , N}. By calculating precision and

recall for all values of R, we can build a precision-recall curve (PRC), which illustrates the ability of the system
to retrieve relevant images from the database in the appropriate order of similarity. Interpretation of the PRC is
similar to a receiver operating characteristic (ROC) curve, where the area under the curve is a measure of how
well different metrics perform on the same retrieval task. The average PRC over all Cq ∈ Ste is calculated to
represent the performance of each metric ψ listed in Table 3. Three-fold cross-validation is performed to ensure
that all images are used as both query and repository images and thus prevent overfitting the BDM.

Proc. of SPIE Vol. 7260  72603F-7



5.2 Support Vector Machine (SVM) Classifier

In order to additionally evaluate the discriminative power of the metrics, we perform SVM classification to
classify the query image using the repository as the training data.2 An SVM classifier uses a kernel function
denoted as K(·, ·) to project training data to a higher-dimensional space, where a hyperplane is established that
separates out the different classes. Testing data is then projected into this same space, and is classified according
to where the test objects fall with respect to the hyperplane. A modified version of the common radial basis
function (RBF) was used in this study:

K(Cq, Crj ) = e−γDψ(Cq,Crj ), (9)

where γ is a parameter for normalizing the inputs, Cq is a query image, and Crj is a repository image scene, for
j ∈ {1, · · · , N}. In our formulation, the RBF kernel determines the high-dimensional projection of the inputs
using the distance function Dψ utilizing metric ψ. The intuition is that the separation of the objects in the
projected high dimensional space will reflect the performance of the distance metric. The general form of the
SVM classifier is:

Θ =
�N∑

κ=1

ξκL(Crκ)K(Cq, Crκ) + b, (10)

where Crκ denotes the subset of the overall training data acting as the N̂ support vectors, κ ∈ {1, · · · , N̂},
b is a bias obtained from the training set to maximize the distance between the support vectors, and ξ is a
model parameter obtained via maximization of an objective function.2 The output of Equation 10 represents
the distance between the query image Cq and the decision hyperplane midway between the support vectors,
while the sign of the distance indicates class membership. We can construct a strong classifier, hSVM, where the
classification label of the query image Cq is given as:

hSVM(Cq) =
{

+1, if Θ ≥ 0,
−1, otherwise. (11)

The parameters γ and b are found through randomized three-fold cross validation. We run over 50 trials per
experiment. The percentage of correctly classified images is recorded for each trial.

5.3 Low-Dimensional Embedding

The distance metrics were also evaluated in terms of their ability to preserve object-class relationships while
projecting the data from a high to reduced dimensional space, the reduced dimensional representation being
obtained via a non-linear dimensionality reduction scheme called Graph Embedding. In previous work,20 we
have demonstrated the utility of non-linear DR schemes over linear schemes (PCA) for representing biomedical
data. For each distance metric ψ ∈ {Bray Curtis, · · · ,BDM} given in Table 3, we perform the following steps.

(a) Construct a similarity matrix Wψ(u, v) = e−Dψ(Cru,Crv), for u, v ∈ {1, · · · , N}.
(b) Find the embedding vector X by maximizing the function:

EWψ
(X ) = 2η

XT(Y −Wψ)X
XTY X , (12)

where Y (u, u) =
∑
vWψ(u, v) and η = N − 1.

(c) The d-dimensional embedding space is defined by the eigenvectors corresponding to the smallest d eigenvalues
of (Y −Wψ)X = λY X . For any image C, the embedding X (C) contains the coordinates of the image in the
embedding space and is given as X (C) = [wz(C)|z ∈ {1, · · · , d}], where wz(C) are the z eigenvalues associated
with X (C).
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Figure 3. Precision Recall Curves generated by retrieval of repository images in the high dimensional space using a subset
of the metrics (Bray Curtis, Euclidean, Canberra, Minkowski, and BDM) in this study. Shown are the results on: (a)
DLI using architectural features and (b) DCD using Laws texture features. (c) SVM classification accuracy in the high-
dimensional space for the subset of metrics listed above. Each bar represents a distance metric, and each group of bars
represents a dataset. From left to right are: DLI using architectural features, DLI using Laws features, DCG, and DCD.

6. EXPERIMENTAL RESULTS AND DISCUSSION

The distance metrics described in Table 3 are first evaluated in the original high-dimensional feature space. Each
metric operates on two high-dimensional feature vectors, whose elements are defined by the feature operator Φi,
for i ∈ {1, · · · ,K}. For two images Cq and Crj , we define the distance between the images as a single scalar value
given by Dψ(Cq, Crj ). Note the Minkowski distance, which is parameterized by θ; when θ = 2, this is equivalent
to the Euclidean distance, and as θ → ∞, it becomes the Chebychev distance. For our experiments, θ = 3.

For each experiment given below, the dataset is randomly separated into thirds: two-thirds of the dataset
constitute the training set Str, while the remaining one-third is the testing set Ste.

6.1 Distance Metrics in High Dimensional Space

Distance Metric ψ Formula Dψ

Bray Curtis
�K
i=1 |Φi(Cq)−Φi(Crj )|�K
i=1 Φi(Cq)+Φi(Crj )

Canberra
�K
i=1 |Φi(Cq)−Φi(Crj )|�K
i=1 |Φi(Cq)+Φi(Crj )|

Chebychev limτ→∞
[∑K

i=1(|Φi(Cq) − Φi(Crj )|τ )
] 1
τ

Chi-Squared
∑K
i=1

(Φi(Cq)−Φi(Crj ))2
Φi(Crj )

Euclidean
√∑K

i=1 (Φi(Cq) − Φi(Crj ))2

Manhattan
∑K
i=1 |Φi(Cq) − Φi(Crj )|

Minkowski
[∑K

i=1 |Φi(Cq) − Φi(Crj )θ
] 1
θ

Squared Chi-Squared
∑K
i=1

(Φi(Cq)−Φi(Crj ))2
|Φi(Cq)+Φi(Crj )|

Squared Chord
∑K
i=1 (

√
Φi(Cq) −

√
Φi(Crj ))2

BDM
[

1
T

∑T
t=1 αt‖Φt(Cq) − Φt(Crj )‖2

] 1
2

Table 3. Distance metrics used in this study, operating on a query image scene Cq and a repository scene Cr
j for j ∈

{1, · · · , N}.
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Figure 4. SVM classification accuracy in the low-dimensional space for the subset of metrics (Bray Curtis, Euclidean,
Canberra, Minkowski, and BDM) used in this study. Each bar represents a distance metric, and each group of bars
represents a dataset and a specific feature type. From left to right are: DLI using architectural features, DLI using Laws
features, DCG, and DCD.

Precision Recall Curves: Average PR curves are generated for all distance metrics ψ listed in Table 3.
The PR curves resulting from the CBIR query and retrieval tasks for datasets DLI and DCD and for ψ ∈
{Bray Curtis,Euclidean,Canberra,Minkowski,BDM}, are illustrated in Figures 3(a), 3(b), respectively. In both
Figures 3(a), (b), the black dotted curve represents the BDM. The area under the PRC for the BDM is higher
in both Fig. 3(a) and (b) compared to the Bray Curtis, Euclidean, Canberra, and Minkowski distances.

Support Vector Machines: Figure 3 (c) illustrates the SVM classification accuracy for each of DLI, DCG, DCD

and for metrics ψ ∈ {Bray Curtis,Euclidean,Canberra,Minkowski,BDM} over 50 trials using three-fold cross-
validation. The accuracies are broken up according to classification task, with the DLI dataset evaluated using
both the Laws texture features and the architectural features. In order from left to right: the blue bar represents
the Bray Curtis metric, green represents Canberra, cyan represents Euclidean, red represents Minkowski, and
black represents the BDM. Note that for all feature types, the BDM performs comparably to the other metrics.

6.2 Distance Metrics in Low Dimensional Space

Support Vector Machines: Figure 4 plots the SVM classification accuracies for each of DLI, DCG, DCD

and for metrics ψ ∈ {Bray Curtis,Euclidean,Canberra,Minkowski,BDM} in the low-dimensional classification
experiments. In most classification tasks the BDM out-performs the other metrics in this study. Table 4 shows
the classification accuracies across all metrics for each of the three datasets. These results not only reflect the
BDM’s efficacy in the original feature space, but also its ability to preserve object-class relationships in the low
dimensional data transformation, where the SVM is able to distinguish the different classes.

Low-Dimensional Embedding: Figure 5 is an example of the low-dimensional embedding produced for the
DLI dataset using three different metrics. Figure 5(a) is a three-dimensional embedding obtained via the BDM,
while Figure 5(b) was obtained using the Canberra distance metric and Figure 5(c) using the Minkowski distance
metric. In these plots, green squares indicate the LI class, while blue circles indicate the non-infiltrated class.
The separation between the two classes is much more apparent in the embedding space obtained via the BDM
compared to the embeddings obtained via the non-boosted metrics.

7. CONCLUDING REMARKS

In this paper, we have introduced a Boosted Distance Metric that was shown to be capable of effectively calcu-
lating the similarity between high-dimensional feature vectors in a medical CBIR application. We have demon-
strated that by weighting individual features, the BDM out-performs many traditional metrics, including the
commonly-used Euclidean distance metric. We evaluated the performance of BDM with respect to 9 other simi-
larity metrics on 3 different datasets and using a large number of textural and graph-based image features. The
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ψ
Mean Classification Accuracy (Standard Deviation)

DCD DCG DLI

Bray Curtis 67.33 (6.41) 65.92 (3.00) 84.12 (4.28)
Canberra 62.39 (7.17) 63.67 (8.08) 93.14 (5.63)
Chebychev 67.00 (8.83) 65.58 (3.84) 83.29 (10.91)

Chi-Squared 68.89 (6.66) 64.50 (6.53) 87.71 (7.54)
Euclidean 68.72 (5.66) 63.92 (7.46) 87.86 (7.70)
Manhattan 67.50 (7.64) 63.00 (6.87) 89.93 (6.91)
Minkowski 67.78 (6.07) 63.75 (7.16) 87.07 (8.83)

Squared Chi-Squared 67.28 (6.43) 65.08 (4.03) 87.71 (5.50)
Squared Chord 67.61 (5.46) 63.42 (5.85) 87.14 (7.11)

Boosted Weight Metric 96.30 (2.90) 64.11 (4.23) 96.20 (2.27)
Table 4. SVM Classification accuracy percentages in the low dimensional space, for all distance metrics and all three
datasets (DLI, DCG, DCD). Standard deviation is shown in parentheses. Highest accuracy in each dataset shown in
boldface.

(a) (b) (c)

Figure 5. Low-dimensional embeddings of the high-dimensional data obtained by using (a) the BDM, (b) the Canberra,
and (c) the Minkowski distance metrics on the DLI study using architectural features. Green squares indicate the LI class,
while blue circles indicate the non-infiltrated class.

similarity metrics were evaluated via (a) precision-recall curves, (b) SVM classification accuracy, and (c) in terms
of their ability to preserve object-class relationships from a high to a reduced dimensional space, via a non-linear
dimensionality reduction scheme. For all 3 evaluation criteria, the BDM was superior or comparable to the 9
other distance metrics. Our initial results suggest that for focused biomedical applications, such as CBIR for
histopathology, a supervised learning metric may be a better choice compared to traditional measures that do
not consider feature weighting. In future work, we intend to evaluate the BDM on a much larger cohort of data.
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