Identification of a microRNA panel for clear-cell kidney cancer.

TitleIdentification of a microRNA panel for clear-cell kidney cancer.
Publication TypeJournal Article
Year of Publication2010
AuthorsJuan, D, Alexe G, Antes T, Liu H, Madabhushi A, Delisi C, Ganesan S, Bhanot G, Liou LS
Date Published2010 Apr

OBJECTIVES: To identify a robust panel of microRNA signatures that can classify tumor from normal kidney using microRNA expression levels. Mounting evidence suggests that microRNAs are key players in essential cellular processes and that their expression pattern can serve as diagnostic biomarkers for cancerous tissues. METHODS: We selected 28 clear-cell type human renal cell carcinoma (ccRCC), samples from patient-matched specimens to perform high-throughput, quantitative real-time polymerase chain reaction analysis of microRNA expression levels. The data were subjected to rigorous statistical analyses and hierarchical clustering to produce a discrete set of microRNAs that can robustly distinguish ccRCC from their patient-matched normal kidney tissue samples with high confidence. RESULTS: Thirty-five microRNAs were found that can robustly distinguish ccRCC from their patient-matched normal kidney tissue samples with high confidence. Among this set of 35 signature microRNAs, 26 were found to be consistently downregulated and 9 consistently upregulated in ccRCC relative to normal kidney samples. Two microRNAs, namely, MiR-155 and miR-21, commonly found to be upregulated in other cancers, and miR-210, induced by hypoxia, were also identified as overexpressed in ccRCC in our study. MicroRNAs identified as downregulated in our study can be correlated to common chromosome deletions in ccRCC. CONCLUSIONS: Our analysis is a comprehensive, statistically relevant study that identifies the microRNAs dysregulated in ccRCC, which can serve as the basis of molecular markers for diagnosis.

PDF Link

Short TitleUrology

 *IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.