Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data.

TitleAdaptive Dimensionality Reduction with Semi-Supervision (AdDReSS): Classifying Multi-Attribute Biomedical Data.
Publication TypeJournal Article
Year of Publication2016
AuthorsLee, G, Romo Bucheli DE, Madabhushi A
JournalPloS one
Date Published2016

Medical diagnostics is often a multi-attribute problem, necessitating sophisticated tools for analyzing high-dimensional biomedical data. Mining this data often results in two crucial bottlenecks: 1) high dimensionality of features used to represent rich biological data and 2) small amounts of labelled training data due to the expense of consulting highly specific medical expertise necessary to assess each study. Currently, no approach that we are aware of has attempted to use active learning in the context of dimensionality reduction approaches for improving the construction of low dimensional representations. We present our novel methodology, AdDReSS (Adaptive Dimensionality Reduction with Semi-Supervision), to demonstrate that fewer labeled instances identified via AL in embedding space are needed for creating a more discriminative embedding representation compared to randomly selected instances. We tested our methodology on a wide variety of domains ranging from prostate gene expression, ovarian proteomic spectra, brain magnetic resonance imaging, and breast histopathology. Across these various high dimensional biomedical datasets with 100+ observations each and all parameters considered, the median classification accuracy across all experiments showed AdDReSS (88.7%) to outperform SSAGE, a SSDR method using random sampling (85.5%), and Graph Embedding (81.5%). Furthermore, we found that embeddings generated via AdDReSS achieved a mean 35.95% improvement in Raghavan efficiency, a measure of learning rate, over SSAGE. Our results demonstrate the value of AdDReSS to provide low dimensional representations of high dimensional biomedical data while achieving higher classification rates with fewer labelled examples as compared to without active learning.

PDF Link

Alternate JournalPLoS ONE

 *IEEE COPYRIGHT NOTICE: 1997 IEEE. * Personal use of this material is permitted. However, permission to reprint/ republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

*COPYRIGHT NOTICE:* These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.